217 research outputs found

    P elements and MITE relatives in the whole genome sequence of Anopheles gambiae

    Get PDF
    BACKGROUND: Miniature Inverted-repeat Terminal Elements (MITEs), which are particular class-II transposable elements (TEs), play an important role in genome evolution, because they have very high copy numbers and display recurrent bursts of transposition. The 5' and 3' subterminal regions of a given MITE family often show a high sequence similarity with the corresponding regions of an autonomous Class-II TE family. However, the sustained presence over a prolonged evolutionary time of MITEs and TE master copies able to promote their mobility has been rarely reported within the same genome, and this raises fascinating evolutionary questions. RESULTS: We report here the presence of P transposable elements with related MITE families in the Anopheles gambiae genome. Using a TE annotation pipeline we have identified and analyzed all the P sequences in the sequenced A. gambiae PEST strain genome. More than 0.49% of the genome consists of P elements and derivates. P elements can be divided into 9 different subfamilies, separated by more than 30% of nucleotide divergence. Seven of them present full length copies. Ten MITE families are associated with 6 out of the 9 Psubfamilies. Comparing their intra-element nucleotide diversities and their structures allows us to propose the putative dynamics of their emergence. In particular, one MITE family which has a hybrid structure, with ends each of which is related to a different P-subfamily, suggests a new mechanism for their emergence and their mobility. CONCLUSION: This work contributes to a greater understanding of the relationship between full-length class-II TEs and MITEs, in this case P elements and their derivatives in the genome of A. gambiae. Moreover, it provides the most comprehensive catalogue to date of P-like transposons in this genome and provides convincing yet indirect evidence that some of the subfamilies have been recently active

    LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss

    Get PDF
    Background: LTR retrotransposons are one of the main causes for plant genome size and structure evolution, along with polyploidy. The characterization of their amplification and subsequent elimination of the genomes is therefore a major goal in plant evolutionary genomics. To address the extent and timing of these forces, we performed a detailed analysis of 41 LTR retrotransposon families in rice. Results: Using a new method to estimate the insertion date of both truncated and complete copies, we estimated these two forces more accurately than previous studies based on other methods. We show that LTR retrotransposons have undergone bursts of amplification within the past 5 My. These bursts vary both in date and copy number among families, revealing that each family has a particular amplification history. The number of solo LTR varies among families and seems to correlate with LTR size, suggesting that solo LTR formation is a family-dependent process. The deletion rate estimate leads to the prediction that the half-life of LTR retrotransposon sequences evolving neutrally is about 19 My in rice, suggesting that other processes than the formation of small deletions are prevalent in rice DNA removal. Conclusion: Our work provides insights into the dynamics of LTR retrotransposons in the rice genome. We show that transposable element families have distinct amplification patterns, and that the turn-over of LTR retrotransposons sequences is rapid in the rice genome

    S-MART, A Software Toolbox to Aid RNA-seq Data Analysis

    Get PDF
    High-throughput sequencing is now routinely performed in many experiments. But the analysis of the millions of sequences generated, is often beyond the expertise of the wet labs who have no personnel specializing in bioinformatics. Whereas several tools are now available to map high-throughput sequencing data on a genome, few of these can extract biological knowledge from the mapped reads. We have developed a toolbox called S-MART, which handles mapped RNA-Seq data. S-MART is an intuitive and lightweight tool which performs many of the tasks usually required for the analysis of mapped RNA-Seq reads. S-MART does not require any computer science background and thus can be used by all of the biologist community through a graphical interface. S-MART can run on any personal computer, yielding results within an hour even for Gb of data for most queries. S-MART may perform the entire analysis of the mapped reads, without any need for other ad hoc scripts. With this tool, biologists can easily perform most of the analyses on their computer for their RNA-Seq data, from the mapped data to the discovery of important loci

    Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome.

    Get PDF
    BACKGROUND: The recent availability of genome sequences has provided unparalleled insights into the broad-scale patterns of transposable element (TE) sequences in eukaryotic genomes. Nevertheless, the difficulties that TEs pose for genome assembly and annotation have prevented detailed, quantitative inferences about the contribution of TEs to genomes sequences. RESULTS: Using a high-resolution annotation of TEs in Release 4 genome sequence, we revise estimates of TE abundance in Drosophila melanogaster. We show that TEs are non-randomly distributed within regions of high and low TE abundance, and that pericentromeric regions with high TE abundance are mosaics of distinct regions of extreme and normal TE density. Comparative analysis revealed that this punctate pattern evolves jointly by transposition and duplication, but not by inversion of TE-rich regions from unsequenced heterochromatin. Analysis of genome-wide patterns of TE nesting revealed a 'nesting network' that includes virtually all of the known TE families in the genome. Numerous directed cycles exist among TE families in the nesting network, implying concurrent or overlapping periods of transpositional activity. CONCLUSION: Rapid restructuring of the genomic landscape by transposition and duplication has recently added hundreds of kilobases of TE sequence to pericentromeric regions in D. melanogaster. These events create ragged transitions between unique and repetitive sequences in the zone between euchromatic and beta-heterochromatic regions. Complex relationships of TE nesting in beta-heterochromatic regions raise the possibility of a co-suppression network that may act as a global surveillance system against the majority of TE families in D. melanogaster.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Towards efficient data integration and knowledge management in the Agronomic domain

    Get PDF
    International audienceToday, the revolution in empirical technologies has generated vast amounts of data. This data deluge has created an urgent need to assimilate it with a panoramic view. To this end, information systems play a central role in managing and integrating these data, aiding the biologists in exploiting this integrated information for the extraction of new knowledge. The plant bioinformatics node of the Institut Français de Bioinformatique (IFB) maintains public information systems where a variety of domain specific data are integrated. Currently, efforts are being taken to expose the IFB plant bioinformatics resources as RDF, utilising domain specific ontologies and metadata. Here, we present the overview and the progress of the project
    • …
    corecore